Regression Performance of Group Lasso for Arbitrary Design Matrices
نویسندگان
چکیده
In many linear regression problems, explanatory variables are activated in groups or clusters; group lasso has been proposed for regression in such cases. This paper studies the nonasymptotic regression performance of group lasso using `1/`2 regularization for arbitrary (random or deterministic) design matrices. In particular, the paper establishes under a statistical prior on the set of nonzero coefficients that the `1/`2 group lasso has a near-optimal regression error for all but a vanishingly small set of models. The analysis in the paper relies on three easily computable metrics of the design matrix – coherence, block coherence, and spectral norm. Remarkably, under certain conditions on these metrics, the `1/`2 group lasso can perform near-ideal regression even if the model order scales almost linearly with the number of rows of the design matrix. This is in stark contrast with prior work on the regression performance of the `1/`2 group lasso that only provides linear scaling of the model order for the case of random design matrices. Keywords— Group sparsity, linear regression, group lasso, coherence, block coherence
منابع مشابه
The Performance of Group Lasso for Linear Regression of Grouped Variables
The lasso [19] and group lasso [23] are popular algorithms in the signal processing and statistics communities. In signal processing, these algorithms allow for efficient sparse approximations of arbitrary signals in overcomplete dictionaries. In statistics, they facilitate efficient variable selection and reliable regression under the linear model assumption. In both cases, there is now ample ...
متن کاملBlock Regularized Lasso for Multivariate Multi-Response Linear Regression
The multivariate multi-response (MVMR) linear regression problem is investigated, in which design matrices are Gaussian with covariance matrices Σ = ( Σ, . . . ,Σ ) for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) are recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions to guarantee successful recovery ...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملMultivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.
We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associat...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کامل